

Composite Solid Ion Conductor with Engineered Lithium Interface

PI: Dee Strand

Presenter: Gang Cheng

Wildcat Discovery Technologies June 24, 2021

2021 DOE Vehicle Technologies Office Annual Merit Review

Project ID#: BAT479

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline:

Project Start: Oct. 1, 2019

Project End: Sept. 30, 2021

% Complete: 79%

Budget:

■ DOE Share: \$1,529,792

Wildcat Share: \$305,959

Funding rec'd for 2019: \$196,538

Funding rec'd for 2020: \$584,852

Funding for 2021: \$442,443

Barriers & Technical Targets:

- Development of PHEV and EV batteries that meet or exceed DOE and USABC goals
 - Cost
 - Performance
 - Safety

Partners:

None

Relevance

Goals:

 Develop a solid polymer-ceramic electrolyte and protected lithium metal anode to enable lithium batteries with energy density greater than 350 Wh/kg with improved safety

Objectives:

- Develop a composite polymer/ceramic electrolyte using surface modifications to ensure:
 - Low interfacial impedance between the ceramic and the polymer phases
 - Homogeneous dispersion and wetting of the ceramic by the polymer
 - Mechanically stable interfaces
- Develop a coating to mitigate formation of dendrites and high surface area lithium on lithium metal anodes

Composite SSE Target Properties

Property	Target			
Ionic Conductivity	\geq 5 x 10 ⁻³ S/cm			
Shear Modulus	≥ 8.4 GPa			
Oxidative Stability	≥4.3V			
Lithium	Stable			
Compatibility				
Processability	Standard			
Film Thickness	≤ 20 µm			
Thermal Stability	70°C			
Low Temperature	-20°C			
Cost	< \$10/m ²			

Milestones

Current Status

Current Status							40		
			Project Time						
Task	Major Project Tasks	Y1	Y2				Y3		
		Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
1.4	Baseline performance established on initial materials	V							
4.3	Complete synthesis of ceramic ion conductors		V						
4.4	Down-selection of best ceramic ion conductors for further optimization			V					
2.6	Down-selection of best composite solid electrolyte additives for further optimization				✓				
3.3	Down-selection of best high voltage polymer formulations for further optimization				V				
6.3	Down-selection of best approach and materials for lithium passivation					✓			
3.4	Optimization of composite solid electrolyte complete						0		
3.4	Demonstrate polymer oxidative stability > 4.3V on cathode material						✓		
6.2	Final material/process selections complete for final solid state cell optimization and testing							0	
6.5	Final solid-state cell testing results complete								0

✓ = Complete; o = Ongoing

Approach – Composite Solid Electrolyte

- The use of surface treatments and additives to compatibilize polymers with fillers is widely practiced outside of battery applications
- Focus of project was to apply this concept to composite materials containing polymers and inorganic ion conductors to attain the high conductivity of the inorganic phase with the processability/manufacturability of the polymer phase

Approach – Protected Lithium Metal Anode

- Screening lithium protection coatings using liquid electrolytes is fast and easy
 - Typical LIB fabrication methods can be used
 - Cells tend to fail fast due to dendrites and SEI formation
- Focus the solid-state battery testing on chemistries that only perform well in liquid electrolytes

Technical Accomplishments and Progress: Composite Solid Electrolyte

<u>Objective:</u> We need to measure the interfacial resistance between the polymer and the ceramic phase

In a composite material, lithium ions need to cross the polymer/ceramic interface repeatedly as they move between cathode and anode

- Need a very low interfacial resistance between the two phases
- Otherwise, the lithium-ion transport will remain in the polymer phase and go around the ceramic particles
- Ion conductivity of the polymer phase is inherently lower than the ceramic

Accomplishment: A fast "trilayer" method was developed to provide accurate interfacial resistance values in experimental designs

Technical Accomplishments and Progress : Composite Solid Electrolyte

Objective: Demonstrated that we can reduce or eliminate the interfacial resistance between the two phases

Accomplishments: Interfacial resistance can be significantly reduced with appropriate surface treatments and material combinations

- Solutions are not obvious
- Chemistry trends can be identified and used to seek further improvements
- Effect was validated for multiple polymer/ceramic systems

Coupling agents identified for multiple polymer/inorganic systems to significantly reduce interfacial resistance

Technical Accomplishments and Progress : Composite Solid Electrolyte

<u>Objective:</u> Produce a polymer/ceramic composite with low interfacial impedance between the two phases to achieve ionic conductivity similar to that of the inorganic

<u>Accomplishments:</u> Identified compositional ranges required to achieve ionic conductivities similar to that of the inorganic material

- Ultimate ionic conductivity is limited by that of the inorganic material
- Needs to be a "highly filled" polymer composite
- Membrane needs to be primarily inorganic material with polymer serving as a binder
- Mechanical strength of membrane decreases unless the interaction between the polymer and the inorganic is very strong

Identified composite compositions that yield improved conductivities, but need to improve mechanical strength

Technical Accomplishments and Progress: Lithium Metal Protection

Objective: We need a fast, accurate screening method to evaluate lithium metal protection coatings using liquid electrolyte

Accomplishments: Evaluated multiple material combinations for fast electrochemical evaluation of lithium metal protection coatings

- NMC//Li is ultimate chemistry and can be used to evaluate voltage stability of the composite solid-state electrolyte
- Alternative pairings such as LTO minimize effects from higher voltage cathodes

Li//Li symmetric cells selected to monitor both Li stripping and plating behavior

Technical Accomplishments and Progress: Lithium Metal Protection

<u>Objective:</u> Identify coating chemistries using liquid electrolyte additives that yield good performance

<u>Accomplishments:</u> Identified several chemical approaches for lithium protection.

- Significant improvement in cumulative capacity plated prior to failure for specific chemistries
- SEI benefits for specific chemistries were then combined to achieve even better performance

Combinations of coating chemistries yielded the biggest improvements in cumulative capacity plated

Technical Accomplishments and Progress: Lithium Metal Protection

<u>Objective:</u> Translate approaches identified using liquid electrolytes to solid state electrolytes

<u>Accomplishments:</u> Demonstrated stable lithium plating/stripping in symmetric cells containing composite solid electrolyte

- Identified the lithium metal coatings with lowest initial resistance in the Li//Li cell
- Significant reduction relative to resistance with non-coated lithium metal
- Stable cycling in symmetric cell achieved

Translating the protection methods from liquid to SSE was effective

Technical Accomplishments and Progress: Solid-state Cells

<u>Objective:</u> Demonstrate all-solid-state cells by integrating composite solid electrolytes (CSE) and lithium metal protection with a suitable cathode-catholyte composition

<u>Accomplishments:</u> Assembled all-solid-state Li//NMC full cells with an NMC cathode and an NMC cathode-catholyte composition

- Developed an NCM-based solid-state cells that could charge up to 4.3V with protected Li metal anode
- Li//NMC full cell with catholyte incorporated into the cathode was chosen as test-vehicle for full-cell development

Li//NMC-catholyte cells were chosen as the test vehicles to evaluate all-solid-state cells' performance

Technical Accomplishments and Progress: Solid-state Cells

Objective: 1) To screen catholyte compositions and integrate it with optimized composite solid electrolyte (CSE) and to identify the parameters that affect the solid-state full-cell's ability to deliver a full charge up to 4.3V and the cycling performance

Accomplishments:

- High-throughput screening allowed simultaneous evaluation of multiple CSE and High Voltage Polymer (HVP) candidates in Li//NMC catholyte full cell configuration
- We found that the <u>HVP type in the CSE</u> plays an influential role in the full-cell's ability to charge up to 4.3 V and the its discharge capacities
- We narrowed down HVP candidates for further optimization in full cells

HVP types and CSE compositions that can consistently deliver a full charge up to 4.3V were identified

Response to Previous Year's Reviewers' Comments

This is the first year that the project has been reviewed

Collaborations

No outside collaborations occurred on this project

Remaining Challenges and Barriers

- Composite SSE approach should be general
 - o Should identify coupling agents/surface treatments for a variety of polymer/inorganic combinations
- Production of highly filled inorganic composites with good mechanical strength is challenging
 - Should be achievable as other industries use these (EM shielding, thermal, and optical applications)
- Interfacial resistance within cathode still needs to be reduced
 - Wildcat focused on reducing interfacial resistance within the SSE composite
- Consistent, low-cost source of thin lithium is needed

Proposed Future Research

Composite SSE

- Wildcat is still building on database of coupling agents/surface treatments for more combinations of polymers and inorganic ion conductors
- Optimize incorporation of the SSE (catholyte) into the cathode
- Protected lithium anode
 - Further reduce resistance between SSE and coated lithium.
 - Continue to build database of chemistry vs. performance for further knowledge and improvements

Any proposed future work is subject to change based on funding levels

Summary

Thrust 1 (Composite Solid Electrolyte)

- Screened many coupling agents/surface treatments at various of polymer/ceramic composite system using Wildcat Tri-layer test vehicle → Over 5,200 EIS measurements have been done
- Successful demonstration of significant interface resistance reduction in Tri-layer system showed great promise for implementing effective surface treatments to composite solid electrolyte development
- Greatly improved the composite solid electrolyte film quality with reasonable amount of ceramic

Thrust 2 (Li-metal)

- Screened many of surface coatings to protect Li metal surface
- Successfully identified several promising coatings with much improved total Li striping/plating capacity

Thrust 3 (All Solid-State Full cell)

- Developed and tested catholyte composites in full cell using composite solid electrolyte from Thrust 1 and protected Li metal surface from Thrust 2
- Demonstrated working all solid-state cell with no liquid components with reasonably good cycle life

Accelerating Breakthrough Discoveries www.wildcatdiscovery.com

Technical Back-up Slides

Synthesis Optimization of Ceramic Ion Conductors

Wildcat HT synthesis enables rapid screening of ceramic ion conductors

Characterizations of Ceramic Ion Conductors

Down-selection of LATP as an air stable ceramic ion Conductor

Li/Li cells: Cycling protocol, Cell failure example

Cycle No.	Plating/Stripping Current Density (mA/cm², for 1hr)	Theor. Li Deposited (µm)
1-5	1.0	4.82
6-10	1.2	5.78
11-15	1.4	6.75
16-20	1.6	7.71
21-25	1.8	8.68
26-30	2.0	9.64
31-35	2.2	10.60
36-40	2.4	11.57
41-45	2.6	12.53
46-50	2.8	13.50
51-55	3.0	14.46
56-80	3.2-4.0	15.42-19.38

- When using Li//Li symmetric cell format, an increasingly aggressive cycling protocol will be used (Increasing current density from 1.0-4.0 mA/cm²)
- Example Li//Li cycling performance is shown on the right
- A soft short occurs when a current density of 2.6 mA/cm² is reached (red arrow)

Li/Li Cells: Initial Single Additive HT Screening

- Many types of additives families are currently being tested and compared to a baseline (non-treated Li metal) system
- While many of these additives show worse/comparable performance to the baseline system, some (red circle) are showing promising performance

Li metal: Calendar Life Results

- To determine the ability of the Li metal protection to prevent resistance growth due to SSE decomposition, calendar life testing is performed
- Compared to the baseline system, many Li metal protections showed minimalized resistance growth but also showed higher initial resistance
- Among them, SEI 404 and 409 showed the most promising results in terms of both initial resistance and resistance growth